0.引言
電力系統削峰填谷是負荷管理的重要方面。對電網運營者來說,負荷峰值降低有利于推遲設備容量升級,提高設備利用率,節省設備更新的費用,降低供電成本,對電力用戶來說,可以利用峰谷電價差獲得經濟效益。大規模電池儲能系統(batteryenergystoragesystem,BESS)以其優勢在削峰填谷方面能夠發揮巨大作用。
電池儲能系統采用恒功率的充放電策略,既方便對電池控制,又有利于削峰填谷實時控制。尤其是當負荷高峰提前到來時,若采用恒功率充放電策略,在實時控制時可以根據實際負荷值靈活地控制起始放電時間。本文針對采用恒功率充放電策略運行的電池儲能系統,提出恒功率充放電優化模型。為便于實際應用,提出求解該模型的實用簡化算法。通過對深圳碧嶺站的2組預測負荷數據進行優化,得到電池的充放電策略,驗證該實用簡化算法的實用性,并與序列二次規劃算法的求解結果進行比較。
1.電池儲能系統恒功率充放電優化模型
1.1模型假設
本文提出2點假設:
. 忽略電池的爬坡速率約束;
. 忽略電池組的內部損耗。
1.2優化變量
模型中的優化變量為電池每次充放電的功率p(j)以及電池每次充放電的起始時間Tstart(j)和結束時間Tstop(j),j=1,2,…,n,其中n為1d中電池充放電次數,根據負荷曲線及電池使用狀況來確定。考慮到充放電次數過多會影響電池使用壽命,可使電池每天充放電各1次。如負荷曲線在上午和下午有2個高峰,可令電池在1d中充放電各2次。如考慮到晚間民用負荷高峰,可讓電池充放電各3次。通過改變參數可靈活控制電池的充放電次數,利于延長電池的使用壽命。定義電池的充電功率為正,放電功率為負。
1.3目標函數
儲能系統可在套利模式和負荷轉移模式2種模式下工作。在套利模式下,目標函數f(b)是使套利*大化。根據給定的分時電價曲線,模型可給出電池充放電策略,帶來經濟效益。一般來說,負荷高峰期電價高,負荷低谷期電價低。電池在電價高時放電,在電價低時充電,起到了削峰填谷的作用。在負荷轉移模式下工作時,目標函數f(b)為*小化負荷的方差,因為在數學上,方差可反映隨機變量偏離其均值的程度。本文中采用*2種目標函數。將1d劃分成np個相等的時間段,目標函數為
minf(b)=D1(i)?D1(j)2(1)
式中:D1(i)為經過電池削峰填谷后*i個時間段上的負荷值,i=1,2,…,np。
1.3約束條件
1)負荷值約束為
D1(i)=D0(i)?[(sign(i?Tstart(j))?1)],
i=1,2,…,np(2)
式中:D0(i)(i=1,2,…,np)為已知的*i個時間段上的預測負荷數據;sign(x)為符號函數,當x≥0時sign(x)=1,當x<0時sign(x)=?1。當i在Tstart(j)和Tstop(j)(j=1,2,…,n)之間時,D1是D0與p(j)之和;當i取其他值時,D1與D0相等。
2)時序約束為
1≤Tstart(1)(3)
Tstart(j)<Tstop(j),j=1,2, n(4)
Tstop(i)<Tstart(i+1),i=1,2, n?1(5)
Tstop(n)≤np(6)
3)功率約束為
?Pmax≤p(i)≤Pmax,i=1,2, ,n(7)
式中Pmax為已知的*大充放電功率限值。
4)容量約束為
Slow<Sinitial+[(Tstop(i)?Tstart(i))p(i)]<Shigh,
k=1,2,…,n?1(8)
Sinitial+[(Tstop(i)?Tstart(i))p(i)]=Sfinal(9)
式中:Slow和Shigh分別為已知的電池電量的下限和上限;Sinitial和Sfinal分別為已知的電池電量的初值和希望的終值。
另外,還可以考慮電池物理約束等其他非線性約束。在上述模型中,目標函數、容量約束是非線性的,負荷值約束中包含的符號函數sign(x)是不連續的。因此模型求解非常困難,可以通過選取大量不同的初始點來尋找近似*優解,但這會增加計算量及計算時間。為方便實際應用,本文提出針對恒功率充放電模型的實用簡化求解算法。
2.電池儲能系統恒功率充放電模型的實用簡化求解算法
由于上述優化模型求解困難,不利于實際應用,可以根據所要優化的負荷特性,采用簡化求解算法。以深圳碧嶺站為例,1d的典型負荷曲線如下圖所示:
在上午、下午和晚上各有1個負荷高峰時段;在凌晨、中午和傍晚各有1個負荷低谷時段。為了延長電池的使用壽命,讓電池在凌晨充電1次,在上午和下午的負荷高峰時段各放電1次。由于電池總功率與負荷功率相比非常小,可以讓電池以*大功率充放電。總放電時間和總充電時間都為T=S/Pmax。
放電時段的起始時刻和終止時刻的選擇方法如下:將一條水平線從上到下以很小的步長ΔP移動,水平線會與負荷曲線上午和下午的2個高峰相交。若相交的2個時段的時間之和為T,則找到了電池的2個放電區間;若相交的2個時段的時間之和小于T,將水平線以ΔP向下移動再進行比較,直到相交的2個時段的時間之和等于T為止。
同樣,將水平線從下到上以一個很小的步長ΔP移動,求出凌晨的充電時段。目前,實用簡化算法已經應用于深圳寶清電池儲能站中。
3.電池儲能系統削峰填谷實時控制
在削峰填谷實時控制階段,需綜合考慮削峰填谷日前優化結果、實時負荷曲線、電池SOC等信息,計算出充放電起止時間和充放電功率來進行控制。
1)充放電起止時間的確定。實際負荷曲線與預測負荷曲線之間不可避免地存在誤差。研究表明,若實際負荷曲線與預測負荷曲線形狀相同,只是在垂直方向進行移動,則*優的電池充放電策略相同。若實際負荷曲線與預測負荷曲線的峰谷起止時刻相同,峰谷的高低有所變化,當儲能系統的功率遠小于負荷功率時,二者的*優充放電策略幾乎相同。因此,如果能夠保證預測負荷曲線的峰谷起止時間準確,則直接采用日前優化出的充放電起止時間作為實際的充放電起止時間。若無法保證預測負荷曲線的峰谷起止時刻的準確性,也就是說,實時負荷曲線的峰谷可能提前或推遲到來,此時采用負荷閾值來確定充放電開始時刻,當實時負荷達到閾值時開始充電或放電。充放電結束時刻采用日前優化的結果。
2)充放電功率的確定。若充放電起始時刻根據負荷閾值判斷,不同于日前優化出的起始時刻,此時的充放電功率需重新計算,用日前優化得到的充放電能量除以充放電時間,且保證滿足式(7)中的功率限制。另外,電池儲能系統除了執行削峰填谷功能外,還可能響應調峰調頻等其他功能,使電池SOC突然發生變化,在實時控制中,計算充放電功率時還需考慮電池的剩余電量。
4.測試結果
4.1序列二次規劃方法求解結果
假設電池容量S=20MW·h,*大充放電功率Pmax=5MW,Slow=0,Shig=S。零點時電池電量Sinitial=0,經1個周期后電量Sfinal=0。1d有np=288個時間段,每個時間段為5min。為便于控制,設定約束使電池在早上06:00處于充滿狀態,因此充電階段被限制在06:00以前。下面通過2組不同的預測負荷數據來驗證該算法的有效性。
首先隨機選取大量初始點,從每個初始點出發采用序列二次規劃方法(successivequadraticprogramming,SQP)來求解電池儲能系統恒功率充放電策略優化模型,再比較所有求解結果,從中選出使目標函數*優的解。序列二次規劃方法是一類求解含非線性不等式約束優化問題的很重要、很有效的方法。算法中采用變尺度方法構造海森矩陣,所以該方法又稱為約束變尺度法。這種方法不僅利用了目標函數和約束條件的1階導數信息,而且利用了目標函數的2階導數信息,收斂速度快。
在測試中,用于顯示優化結果的圖形包含2部分,上圖的虛線為原始負荷曲線,實線為經過儲能削峰填谷后的負荷曲線,下圖為儲能系統出力曲線。
針對2組不同的預測負荷曲線,采用1d充電1次、放電2次的策略,優化出的電池出力曲線如圖2和圖3所示。
針對2組不同的預測負荷曲線,采用1d充電2次、放電2次的策略,優化出的電池出力曲線如圖4和圖5所示。針對兩組不同的預測負荷曲線,采用1d充電1次、放電3次的策略,優化出的電池出力曲線如圖6和圖7所示。
由于求解時隨機選取了大量初始點,再將各初始點的優化結果進行比較,因此解的穩定性差,無法保證每次優化的計算結果都相同,且增加了計算時間。優點是可以用來求解任意次數充放電的優化模型。
4.2實用簡化算法求解結果
采用實用簡化算法,通過水平線與負荷曲線相交的位置確定出充電區間和放電區間。針對2組不同的曲線,優化出的結果為電池在1d中充電1次,放電2次,優化結果如圖8和圖9所示。簡化算法求出的結果與采用序列二次規劃法求出的結果類似。簡化算法的計算速度快,優化結果穩定,適于實際應用,但不適用于兩充兩放的情況。實用簡化算法已經應用于深圳寶清電池儲能站中。圖10為儲能站的監控系統顯示的削峰填谷優化結果。圖中:曲線1為碧嶺站預測負荷曲線;曲線2為經過削峰填谷后的負荷曲線。
5.Acrel-2000MG微電網能量管理系統概述
5.1概述
Acrel-2000MG微電網能量管理系統,是我司根據新型電力系統下微電網監控系統與微電網能量管理系統的要求,總結國內外的研究和生產的經驗,專門研制出的企業微電網能量管理系統。本系統滿足光伏系統、風力發電、儲能系統以及充電樁的接入,全天候進行數據采集分析,直接監視光伏、風能、儲能系統、充電樁運行狀態及健康狀況,是一個集監控系統、能量管理為一體的管理系統。該系統在安全穩定的基礎上以經濟優化運行為目標,促進可再生能源應用,提高電網運行穩定性、補償負荷波動;有效實現用戶側的需求管理、消除晝夜峰谷差、平滑負荷,提高電力設備運行效率、降低供電成本。為企業微電網能量管理提供安全、可靠、經濟運行提供了全新的解決方案。
微電網能量管理系統應采用分層分布式結構,整個能量管理系統在物理上分為三個層:設備層、網絡通信層和站控層。站級通信網絡采用標準以太網及TCP/IP通信協議,物理媒介可以為光纖、網線、屏蔽雙絞線等。系統支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。
5.2適用場合
系統可應用于城市、高速公路、工業園區、工商業區、居民區、智能建筑、海島、無電地區可再生能源系統監控和能量管理需求。
5.3型號說明
Acrel-2000
Acrel-2000系列監控系統MG—微電網能量管理系統。
5.4系統功能
(1)實時監測
微電網能量管理系統人機界面友好,應能夠以系統一次電氣圖的形式直觀顯示各電氣回路的運行狀態,實時監測各回路電壓、電流、功率、功率因數等電參數信息,動態監視各回路斷路器、隔離開關等合、分閘狀態及有關故障、告警等信號。其中,各子系統回路電參量主要有:三相電流、三相電壓、總有功功率、總無功功率、總功率因數、頻率和正向有功電能累計值;狀態參數主要有:開關狀態、斷路器故障脫扣告警等。
系統應可以對分布式電源、儲能系統進行發電管理,使管理人員實時掌握發電單元的出力信息、收益信息、儲能荷電狀態及發電單元與儲能單元運行功率設置等。
系統應可以對儲能系統進行狀態管理,能夠根據儲能系統的荷電狀態進行及時告警,并支持定期的電池維護。
微電網能量管理系統的監控系統界面包括系統主界面,包含微電網光伏、風電、儲能、充電樁及總體負荷組成情況,包括收益信息、天氣信息、節能減排信息、功率信息、電量信息、電壓電流情況等。根據不同的需求,也可將充電,儲能及光伏系統信息進行顯示。
圖2系統主界面
子界面主要包括系統主接線圖、光伏信息、風電信息、儲能信息、充電樁信息、通訊狀況及一些統計列表等。
(2)光伏界面
圖3光伏系統界面
本界面用來展示對光伏系統信息,主要包括逆變器直流側、交流側運行狀態監測及報警、逆變器及電站發電量統計及分析、并網柜電力監測及發電量統計、電站發電量年有效利用小時數統計、發電收益統計、碳減排統計、輻照度/風力/環境溫濕度監測、發電功率模擬及效率分析;同時對系統的總功率、電壓電流及各個逆變器的運行數據進行展示。
(3)儲能界面
圖4儲能系統界面
本界面主要用來展示本系統的儲能裝機容量、儲能當前充放電量、收益、SOC變化曲線以及電量變化曲線。
圖5儲能系統PCS參數設置界面
本界面主要用來展示對PCS的參數進行設置,包括開關機、運行模式、功率設定以及電壓、電流的限值。
圖6儲能系統BMS參數設置界面
本界面用來展示對BMS的參數進行設置,主要包括電芯電壓、溫度保護限值、電池組電壓、電流、溫度限值等。
圖7儲能系統PCS電網側數據界面
本界面用來展示對PCS電網側數據,主要包括相電壓、電流、功率、頻率、功率因數等。
圖8儲能系統PCS交流側數據界面
本界面用來展示對PCS交流側數據,主要包括相電壓、電流、功率、頻率、功率因數、溫度值等。同時針對交流側的異常信息進行告警。
圖9儲能系統PCS直流側數據界面
本界面用來展示對PCS直流側數據,主要包括電壓、電流、功率、電量等。同時針對直流側的異常信息進行告警。
圖10儲能系統PCS狀態界面
本界面用來展示對PCS狀態信息,主要包括通訊狀態、運行狀態、STS運行狀態及STS故障告警等。
圖11儲能電池狀態界面
本界面用來展示對BMS狀態信息,主要包括儲能電池的運行狀態、系統信息、數據信息以及告警信息等,同時展示當前儲能電池的SOC信息。
圖12儲能電池簇運行數據界面
本界面用來展示對電池簇信息,主要包括儲能各模組的電芯電壓與溫度,并展示當前電芯的*大、*小電壓、溫度值及所對應的位置。
(4)風電界面
圖13風電系統界面
本界面用來展示對風電系統信息,主要包括逆變控制一體機直流側、交流側運行狀態監測及報警、逆變器及電站發電量統計及分析、電站發電量年有效利用小時數統計、發電收益統計、碳減排統計、風速/風力/環境溫濕度監測、發電功率模擬及效率分析;同時對系統的總功率、電壓電流及各個逆變器的運行數據進行展示。
(5)充電樁界面
圖14充電樁界面
本界面用來展示對充電樁系統信息,主要包括充電樁用電總功率、交直流充電樁的功率、電量、電量費用,變化曲線、各個充電樁的運行數據等。
(6)視頻監控界面
圖15微電網視頻監控界面
本界面主要展示系統所接入的視頻畫面,且通過不同的配置,實現預覽、回放、管理與控制等。
(7)發電預測
系統應可以通過歷史發電數據、實測數據、未來天氣預測數據,對分布式發電進行短期、超短期發電功率預測,并展示合格率及誤差分析。根據功率預測可進行人工輸入或者自動生成發電計劃,便于用戶對該系統新能源發電的集中管控。
圖16光伏預測界面
(8)策略配置
系統應可以根據發電數據、儲能系統容量、負荷需求及分時電價信息,進行系統運行模式的設置及不同控制策略配置。如削峰填谷、周期計劃、需量控制、有序充電、動態擴容等。
圖17策略配置界面
(9)運行報表
應能查詢各子系統、回路或設備時間的運行參數,報表中顯示電參量信息應包括:各相電流、三相電壓、總功率因數、總有功功率、總無功功率、正向有功電能等。
圖18運行報表
(10)實時報警
應具有實時報警功能,系統能夠對各子系統中的逆變器、雙向變流器的啟動和關閉等遙信變位,及設備內部的保護動作或事故跳閘時應能發出告警,應能實時顯示告警事件或跳閘事件,包括保護事件名稱、保護動作時刻;并應能以彈窗、聲音、短信和電話等形式通知相關人員。
圖19實時告警
(11)歷史事件查詢
應能夠對遙信變位,保護動作、事故跳閘,以及電壓、電流、功率、功率因數、電芯溫度(鋰離子電池)、壓力(液流電池)、光照、風速、氣壓越限等事件記錄進行存儲和管理,方便用戶對系統事件和報警進行歷史追溯,查詢統計、事故分析。
圖20歷史事件查詢
(12)電能質量監測
應可以對整個微電網系統的電能質量包括穩態狀態和暫態狀態進行持續監測,使管理人員實時掌握供電系統電能質量情況,以便及時發現和消除供電不穩定因素。
1)在供電系統主界面上應能實時顯示各電能質量監測點的監測裝置通信狀態、各監測點的A/B/C相電壓總畸變率、三相電壓正序/負序/零序電壓值、三相電流正序/負序/零序電流值;
2)諧波分析功能:系統應能實時顯示A/B/C三相電壓總諧波畸變率、A/B/C三相電流總諧波畸變率、奇次諧波電壓總畸變率、奇次諧波電流總畸變率、偶次諧波電壓總畸變率、偶次諧波電流總畸變率;應能以柱狀圖展示2-63次諧波電壓含有率、2-63次諧波電壓含有率、0.5~63.5次間諧波電壓含有率、0.5~63.5次間諧波電流含有率;
3)電壓波動與閃變:系統應能顯示A/B/C三相電壓波動值、A/B/C三相電壓短閃變值、A/B/C三相電壓長閃變值;應能提供A/B/C三相電壓波動曲線、短閃變曲線和長閃變曲線;應能顯示電壓偏差與頻率偏差;
4)功率與電能計量:系統應能顯示A/B/C三相有功功率、無功功率和視在功率;應能顯示三相總有功功率、總無功功率、總視在功率和總功率因素;應能提供有功負荷曲線,包括日有功負荷曲線(折線型)和年有功負荷曲線(折線型);
5)電壓暫態監測:在電能質量暫態事件如電壓暫升、電壓暫降、短時中斷發生時,系統應能產生告警,事件能以彈窗、閃爍、聲音、短信、電話等形式通知相關人員;系統應能查看相應暫態事件發生前后的波形。
6)電能質量數據統計:系統應能顯示1min統計整2h存儲的統計數據,包括均值、*大值、*小值、95%概率值、方均根值。
7)事件記錄查看功能:事件記錄應包含事件名稱、狀態(動作或返回)、波形號、越限值、故障持續時間、事件發生的時間。
圖21微電網系統電能質量界面
(13)遙控功能
應可以對整個微電網系統范圍內的設備進行遠程遙控操作。系統維護人員可以通過管理系統的主界面完成遙控操作,并遵循遙控預置、遙控返校、遙控執行的操作順序,可以及時執行調度系統或站內相應的操作命令。
圖22遙控功能
(14)曲線查詢
應可在曲線查詢界面,可以直接查看各電參量曲線,包括三相電流、三相電壓、有功功率、無功功率、功率因數、SOC、SOH、充放電量變化等曲線。
圖23曲線查詢
(15)統計報表
具備定時抄表匯總統計功能,用戶可以自由查詢自系統正常運行以來任意時間段內各配電節點的用電情況,即該節點進線用電量與各分支回路消耗電量的統計分析報表。對微電網與外部系統間電能量交換進行統計分析;對系統運行的節能、收益等分析;具備對微電網供電可靠性分析,包括年停電時間、年停電次數等分析;具備對并網型微電網的并網點進行電能質量分析。
圖24統計報表
(16)網絡拓撲圖
系統支持實時監視接入系統的各設備的通信狀態,能夠完整的顯示整個系統網絡結構;可在線診斷設備通信狀態,發生網絡異常時能自動在界面上顯示故障設備或元件及其故障部位。
圖25微電網系統拓撲界面
本界面主要展示微電網系統拓撲,包括系統的組成內容、電網連接方式、斷路器、表計等信息。
(17)通信管理
可以對整個微電網系統范圍內的設備通信情況進行管理、控制、數據的實時監測。系統維護人員可以通過管理系統的主程序右鍵打開通信管理程序,然后選擇通信控制啟動所有端口或某個端口,快速查看某設備的通信和數據情況。通信應支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。
圖26通信管理
(18)用戶權限管理
應具備設置用戶權限管理功能。通過用戶權限管理能夠防止未經授權的操作(如遙控操作,運行參數修改等)。可以定義不同級別用戶的登錄名、密碼及操作權限,為系統運行、維護、管理提供可靠的安全保障。
圖27用戶權限
(19)故障錄波
應可以在系統發生故障時,自動準確地記錄故障前、后過程的各相關電氣量的變化情況,通過對這些電氣量的分析、比較,對分析處理事故、判斷保護是否正確動作、提高電力系統安全運行水平有著重要作用。其中故障錄波共可記錄16條,每條錄波可觸發6段錄波,每次錄波可記錄故障前8個周波、故障后4個周波波形,總錄波時間共計46s。每個采樣點錄波至少包含12個模擬量、10個開關量波形。
圖28故障錄波
(20)事故追憶
可以自動記錄事故時刻前后一段時間的所有實時掃描數據,包括開關位置、保護動作狀態、遙測量等,形成事故分析的數據基礎。
用戶可自定義事故追憶的啟動事件,當每個事件發生時,存儲事故掃描周期及事故后10個掃描周期的有關點數據。啟動事件和監視的數據點可由用戶隨意修改。
圖29事故追憶
6.結束語
1)本文提出了電池儲能系統恒功率削峰填谷優化模型及求解該模型的實用簡化算法,可快速進行日前優化,配合實時控制可實現電池儲能系統削峰填谷功能。
2)采用恒功率充放電模型,有利于在實時控制階段對電池儲能系統進行控制。通過改變模型參數可靈活控制電池的充放電次數,延長電池的使用壽命。
3)本文提出的實用簡化算法計算速度快,結果穩定,可以用于求解電池儲能系統1d充電1次,放電多次情況下的優化策略,但不適用于1d當中充電、放電交叉進行的情況。
4)本文提出了削峰填谷實時控制策略,配合削峰填谷日前優化進行控制。本文提出的模型和算法已成功應用于深圳寶清電池儲能站中,現場實測結果證明了該算法的有效性。
參考文獻:
[1]陳滿,陸志剛,劉怡,丁澤俊,饒宏,鮑冠南,陸超.電池儲能系統恒功率削峰填谷優化策略研究.南方電網調峰調頻發電公司
[2]唐捷,任震,高志華,等.峰谷分時電價的成本效益分析模型及其應用[J].電網技術,2007,31(6):61-66.
[3]汪衛華,張慧敏,陳方.用削峰填谷方法提高供電企業效益的分析[J].電網技術,2004,28(18):79-81.
[3]安科瑞企業微電網設計與應用手冊2022.5版.
[3]張文亮,丘明,來小康.儲能技術在電力系統中的應用[J].電網技術,2008,32(7):1-9.